Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.153
1.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734816

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
2.
Arch Microbiol ; 206(5): 241, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698267

The epidemic of stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), would reduce wheat (Triticum aestivum) yields seriously. Traditional experimental methods are difficult to discover the interaction between wheat and Pst. Multi-omics data analysis provides a new idea for efficiently mining the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for differentially expressed genes (DEGs) between low susceptibility and high susceptibility samples, and carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-expression network, identified the core genes and interacted gene pairs from the conservative modules. Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-expression network and drew the wheat NLR gene co-expression network. In order to provide accessible information for related researchers, we built a web-based visualization platform to display the data. Based on the analysis, we found that resistance-related genes such as TaPR1, TaWRKY18 and HSP70 were highly expressed in the network. They were likely to be involved in the biological processes of Pst infecting wheat. This study can assist scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst interaction patterns.


Gene Regulatory Networks , Host-Pathogen Interactions , Plant Diseases , Puccinia , Triticum , Triticum/microbiology , Plant Diseases/microbiology , Puccinia/genetics , Disease Resistance/genetics , Gene Ontology , Gene Expression Regulation, Plant , NLR Proteins/genetics , NLR Proteins/metabolism , Basidiomycota/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
3.
J Environ Pathol Toxicol Oncol ; 43(3): 69-80, 2024.
Article En | MEDLINE | ID: mdl-38608146

The present study explored that the effects and its possible mechanisms of ring finger protein 20 (RNF20) in Postoperative survival rate of liver cancer in clinical. All the serum samples were collected from our hospital. Quantitative polymerase chain reaction (PCR) and microarray analysis, and RNA pull down assay were used in this study. We found that the serum RNF20 mRNA expression level in patients with liver cancer were down-regulated. Postoperative survival rate of RNF20 high expression was higher than that of RNF20 low expression. Then, over-expression of RNF20 diminished liver cancer cell proliferation and metastasis. RNF20 reduced Warburg effect of liver cancer. RNF20 expression regulated NOD-like receptor protein 3 (NLRP3) expression and increased NLRP3 Ubiquitination. NLRP3 participated in the effects of RNF20 on cell proliferation, and not affected on Warburg effect of liver cancer. Our study demonstrated that the serum RNF20 expression level was down-regulated in liver cancer, and promoted postoperative survival rate. RNF20 can reduce cancer progression of liver cancer by NLRP3 signal pathway, suggesting that it may prove to be a potential therapeutic target for postoperative survival rate of liver cancer.


Liver Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Cell Proliferation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitination
4.
Mol Med Rep ; 29(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38639180

Knee osteoarthritis (KOA) is a major cause of disability in elderly individuals. Dicoumarol is a coumarin­like compound derived from sweet clover [Melilotus officinalis (L.) Pall]. It has been suggested that dicoumarol exhibits various types of pharmacological activities, including anticoagulant, antitumor and antibacterial effects. Due to its various biological activities, dicoumarol has a potential protective effect against OA. Therefore, the present study aimed to assess the effects of dicoumarol on knee osteoarthritis. In the present study, dicoumarol was found to protect rat synoviocytes from lipopolysaccharide (LPS)­induced cell apoptosis. Western blot analysis showed that dicoumarol significantly reduced the protein expression levels of fibrosis­related markers and inflammatory cytokines (Tgfb, Timp, Col1a, Il1b and Il18). The inhibitory rates of these proteins were all >50% (P<0.01) compared with those in the LPS and ATP­induced group. Consistently, the mRNA expression levels of these markers and cytokines were decreased to normal levels by dicoumarol after the treatment of rat synovial fibroblasts with LPS and ATP. Mechanistic studies demonstrated that dicoumarol did not affect NF­κB signaling, but it did directly interact with NOD­like receptor protein 3 (NLRP3) to promote its protein degradation, which could be reversed by MG132, but not NH4Cl. The protein half­life of NLRP3 was accelerated from 26.1 to 4.3 h by dicoumarol. Subsequently, dicoumarol could alleviate KOA in vivo; knee joint diameter was decreased from 11.03 to 9.93 mm. Furthermore, the inflammation and fibrosis of the knee joints were inhibited in rats. In conclusion, the present findings demonstrated that dicoumarol could impede the progression of KOA by inhibiting NLRP3 activation, providing a potential treatment strategy for KOA.


Osteoarthritis, Knee , Animals , Rats , Adenosine Triphosphate , Cytokines , Dicumarol , Fibrosis , Inflammasomes/metabolism , Inflammation , Lipopolysaccharides/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Osteoarthritis, Knee/metabolism
5.
Mol Biomed ; 5(1): 14, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644450

NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.


Inflammasomes , NLR Proteins , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , NLR Proteins/metabolism , Animals , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/metabolism , Signal Transduction/immunology , Immunity, Innate , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Inflammation/immunology , Inflammation/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/genetics
6.
Sci Rep ; 14(1): 8070, 2024 04 05.
Article En | MEDLINE | ID: mdl-38580672

Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.


Inflammasomes , Leptin , Animals , Female , Mice , Granulosa Cells/metabolism , Inflammasomes/genetics , Leptin/metabolism , Mice, Obese , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Obesity/metabolism , Receptors, Leptin/genetics , RNA, Messenger
7.
Clin Epigenetics ; 16(1): 58, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38658973

Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.


Alzheimer Disease , DNA Methylation , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/ethnology , Black or African American/genetics , Case-Control Studies , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genomic Imprinting/genetics , NLR Proteins/genetics , White/genetics
8.
Ecotoxicol Environ Saf ; 275: 116282, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38564859

The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.


Arsenic , Liver Diseases , Rats , Animals , Inflammasomes/metabolism , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyroptosis , Disease Models, Animal , Fibrosis , Liver Cirrhosis/chemically induced , Sulfonamides/pharmacology , Cytokines/metabolism
9.
EMBO Rep ; 25(5): 2306-2322, 2024 May.
Article En | MEDLINE | ID: mdl-38528170

Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their low-variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level, hvNLRs provide new pathogen-recognition specificities, but the association between allelic diversity and genomic and epigenomic features has not been established. Our investigation of NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states associated with an increased probability of mutation. Diversifying selection maintains variability at a subset of codons of hvNLRs, while purifying selection maintains conservation at non-hvNLRs. How these features are established and maintained, and whether they contribute to the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune receptors.


Alleles , Arabidopsis Proteins , Arabidopsis , Genetic Variation , NLR Proteins , Arabidopsis/genetics , NLR Proteins/genetics , NLR Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genome, Plant , Gene Expression Regulation, Plant , DNA Methylation/genetics , Genomics/methods , Evolution, Molecular
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 313-319, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38538363

Septic cardiomyopathy (SCM) has a high incidence and complex pathogenesis, which can significantly increase the mortality of sepsis patients. NOD-like receptor protein 3 (NLRP3) inflammatory corpuscles play an important role in the pathogenesis of SCM. Mitochondrial dysfunction in cardiomyocytes is also one of the important pathogenesis of SCM. Activation of NLRP3 inflammatory corpuscles is closely related to mitochondrial dysfunction. The study of interaction mechanism between the two is helpful to find a new therapeutic scheme for SCM. This article reviews the interaction between NLRP3 inflammatory corpuscles and mitochondrial dysfunction in the pathogenesis of SCM, as well as the related mechanisms of traditional Chinese medicine (TCM) prevention and treatment of SCM, providing theoretical reference for further exploring therapeutic targets for SCM.


Cardiomyopathies , Mitochondrial Diseases , Sepsis , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , Cardiomyopathies/etiology , Sepsis/metabolism , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism
11.
Biomolecules ; 14(3)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38540722

Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied NLRP1 expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmann's area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the NLRP1 mRNA expression was significantly higher than in six control brains (p < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (p < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia.


Schizophrenia , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Cerebral Cortex/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , NLR Proteins/genetics , NLR Proteins/metabolism
12.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Article En | MEDLINE | ID: mdl-38553192

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Codonopsis , Colitis, Ulcerative , Colitis , Mice , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inulin/metabolism , Inulin/pharmacology , Inulin/therapeutic use , Interleukin-18 , Codonopsis/metabolism , NLR Proteins/metabolism , Fructans/metabolism , Fructans/pharmacology , Fructans/therapeutic use , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Claudin-1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Autophagy , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism , Colon/pathology
13.
Biochem Pharmacol ; 223: 116173, 2024 May.
Article En | MEDLINE | ID: mdl-38552849

Pyroptosis, a novel programmed cell death mediated by NOD-like receptor protein 3 (NLRP3) inflammasome, is a critical pathogenic process in acute viral myocarditis (AVMC). Mitsugumin 53 (MG53) is predominantly expressed in myocardial tissues and has been reported to exert cardioprotective effects through multiple pathways. Herein, we aimed to investigate the biological function of MG53 in AVMC and its underlying regulatory mechanism in pyroptosis. BALB/c mice and HL-1 cells were infected with Coxsackievirus B3 (CVB3) to establish animal and cellular models of AVMC. As inflammation progressed in the myocardium, we found a progressive decrease in myocardial MG53 expression, accompanied by a significant enhancement of cardiomyocyte pyroptosis. MG53 overexpression significantly alleviated myocardial inflammation, apoptosis, fibrosis, and mitochondrial damage, thereby improving cardiac dysfunction in AVMC mice. Moreover, MG53 overexpression inhibited NLRP3 inflammasome-mediated pyroptosis, reduced pro-inflammatory cytokines (IL-1ß/18) release, and suppressed NF-κB signaling pathway activation both in vivo and in vitro. Conversely, MG53 knockdown reduced cell viability, facilitated cell pyroptosis, and increased pro-inflammatory cytokines release in CVB3-infected HL-1 cells by promoting NF-κB activation. These effects were partially reversed by applying the NF-κB inhibitor BAY 11-7082. In conclusion, our results suggest that MG53 acts as a negative regulator of NLRP3 inflammasome-mediated pyroptosis in CVB3-induced AVMC, partially by inhibiting the NF-κB signaling pathway. MG53 is a promising candidate for clinical applications in AVMC treatment.


Myocarditis , Animals , Mice , Cytokines/metabolism , Inflammasomes/metabolism , Inflammation , Membrane Proteins , Myocarditis/prevention & control , Myocarditis/metabolism , Myocarditis/pathology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyroptosis , Signal Transduction
14.
Cell Death Dis ; 15(3): 217, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38485717

Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.


Acute Kidney Injury , Pyroptosis , Humans , Inflammasomes/metabolism , Lipopolysaccharides/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Kidney Injury/pathology , Inflammation/pathology , NLR Proteins , Endoplasmic Reticulum Stress
16.
Epilepsy Res ; 201: 107338, 2024 Mar.
Article En | MEDLINE | ID: mdl-38447234

BACKGROUND: The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammatory pathway is implicated in the development of epilepsy and can be suppressed by the activation of the silent information regulator 1 (SIRT1). However, the expression and correlation of the NLRP3 pathway and SIRT1 in drug-resistant epilepsy (DRE) remain unknown. METHODS: This study evaluated the histopathology of the cerebral cortex from nine patients with DRE and eight patients with cavernous haemangioma undergoing surgical treatment. It analysed the expression of the NLRP3, interleukin-1ß (IL-1ß), caspase-1 and SIRT1 using immunohistochemistry. Additionally, the contents of NLRP3, caspase-1, IL-1ß and SIRT1 in the serum samples of the included study participants were determined using ELISA method. The correlation between the NLRP3 pathway and the SIRT1 was assessed using Spearman's correlation analysis. RESULTS: The expression of NLRP3, caspase-1 and IL-1ß in the cerebral cortex of patients with DRE was elevated, with the NLRP3 expression being negatively correlated with the SIRT1 expression. Furthermore, IL-1ß in serum was upregulated in patients with DRE. The correlation between the content of serum SIRT1 and NLRP3, caspase-1 and IL-1ß in patients with DRE was not significant. Notably, serum caspase-1 levels were obviously higher in patients with bilateral hippocampal sclerosis than in patients with unilateral hippocampal sclerosis. CONCLUSIONS: The current results indicate that the expression of the NLRP3/caspase-1/IL-1ß pathway is significantly upregulated in patients with DRE and that it is partially correlated with the SIRT1 expression. This study is important for understanding the pathophysiology of DRE and developing new treatment strategies for it.


Hippocampal Sclerosis , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyrin Domain , Sirtuin 1/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism
17.
Int Heart J ; 65(2): 339-348, 2024.
Article En | MEDLINE | ID: mdl-38556341

Myocarditis, a severe inflammatory disease, is becoming a worldwide public health concern. This study aims to elucidate the effect of Chemokine (C C motif) receptor-like 2 (CCRL2) in experimental autoimmune myocarditis (EAM) occurrence and its potential regulatory mechanisms.EAM was simulated in a mouse model injected with α-myosin-heavy chain. The changes on EAM were assessed through histological staining of heart tissues, including measuring cardiac troponin I (cTnI), proinflammatory cytokines, transferase-mediated dUTP nick end labeling (TUNEL) assay, and cardiac function. Then, the heart tissues from the EAM mouse model and control groups were analyzed through transcriptome sequencing to identify the differential expressed genes (DEGs) and hub genes related to pyroptosis. Downregulation of CCRL2 further verified the function of CCRL2 on EAM and p21-activated kinase 1/NOD-like receptor protein 3 (PAK/NLRP3) signaling pathways in vivo.The EAM model was constructed successfully, with the heart weight/body weight ratio, serum level of cTnI, and concentrations of proinflammatory cytokines elevation. Moreover, cell apoptosis was also significantly increased. Transcriptome sequencing revealed 696 and 120 upregulated and downregulated DEGs, respectively. After functional enrichment, CCRL2 was selected as a potential target. Then, we verified that CCRL2 knockdown improved cardiac function, alleviated EAM occurrence, and reduced PAK/NLRP3 protein expression.CCRL2 may act as a novel potential treatment target in EAM by regulating the PAK1/NLRP3 pathway.


Autoimmune Diseases , Myocarditis , Animals , Mice , Autoimmune Diseases/pathology , Cytokines , Disease Models, Animal , Myocarditis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , p21-Activated Kinases/genetics
18.
J Appl Biomed ; 22(1): 23-32, 2024 Mar.
Article En | MEDLINE | ID: mdl-38505967

Dictyophora indusiata, commonly known as bamboo fungus, is a type of edible mushroom that is highly popular worldwide for its rich flavor and nutritional value. It is also recognized for its pharmaceutical efficacy, with medicinal benefits attributed to its consumption. One of the most important components of Dictyophora indusiata is polysaccharide, which has been acknowledged as a promising regulator of biological response due to its immunostimulatory and anti-inflammatory properties. However, the specific roles of polysaccharide in modulating the NOD-like receptor protein 3 (NLRP3) inflammasome activation within macrophages remain relatively under-researched. To investigate this further, the mechanism by which Dictyophora indusiata polysaccharide (DIP) exerts its immunostimulatory activity in RAW 264.7 macrophages was analyzed. Results indicated that DIP has the potential to facilitate the priming of NLRP3 inflammasome activation by enhancing TLR4 expression, phosphorylation of IκB-α, and nuclear translocation of NF-κB p65 subunit. It was noted that DIP was unable to mediate the second step of NLRP3 inflammasome activation. The findings of this study provide compelling evidence that DIP has immunomodulatory effects by modulating the NLRP3 inflammasome in RAW264.7 macrophages.


Basidiomycota , Inflammasomes , NF-kappa B , NF-kappa B/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , NLR Proteins , Signal Transduction , Polysaccharides/pharmacology
19.
World J Gastroenterol ; 30(6): 527-541, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38463022

Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.


Colitis, Ulcerative , Exosomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Exosomes/metabolism , Pyrin Domain
20.
Nature ; 627(8005): 847-853, 2024 Mar.
Article En | MEDLINE | ID: mdl-38480885

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Adenosine Triphosphate , Arabidopsis , NAD , Nicotiana , Phase Separation , Plant Proteins , Protein Domains , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Death , Mutation , NAD/metabolism , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/metabolism , NLR Proteins/chemistry , NLR Proteins/genetics , NLR Proteins/immunology , NLR Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/immunology , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Domains/genetics , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Toll-Like Receptors/chemistry , Receptors, Interleukin-1/chemistry
...